Density Estimation of Censored Data with Infinite-Order Kernels

نویسندگان

  • Arthur Berg
  • Dimitris N. Politis
چکیده

Higher-order accurate density estimation under random right censorship is achieved using kernel estimators from a family of infinite-order kernels. A compatible bandwidth selection procedure is also proposed that automatically adapts to level of smoothness of the underlying lifetime density. The combination of infinite-order kernels with the new bandwidth selection procedure produces a considerably improved estimate of the lifetime density and hazard function surpassing the performance of competing estimators. Infinite-order estimators are also utilized in a secondary manner as pilot estimators in the plug-in approach for bandwidth choice in second-order kernels. Simulations illustrate the improved accuracy of the proposed estimator against other nonparametric estimators of the density and hazard function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Higher-Order Polyspectral Estimation with Flat-Top Lag-Windows

Improved performance in higher-order spectral density estimation is achieved using a general class of infinite-order kernels. These estimates are asymptotically less biased but with the same order of variance as compared to the classical estimators with second-order kernels. A simple, data-dependent algorithm for selecting bandwidth is introduced and is shown to be consistent with estimating th...

متن کامل

On Consistency of Kernel Density Estimators for Randomly Censored Data: Rates Holding Uniformly over Adaptive Intervals

In the usual right-censored data situation, let fn, n∈N, denote the convolution of the Kaplan-Meier product limit estimator with the kernels a−1 n K(·/an), where K is a smooth probability density with bounded support and an→0. That is, fn is the usual kernel density estimator based on Kaplan-Meier. Let f̄n denote the convolution of the distribution of the uncensored data, which is assumed to hav...

متن کامل

Higher-Order estimation of s-th order spectra with flat-top lag-windows

Improved performance in higher-order spectral density estimation is achieved using a general class of infinite-order kernels. These estimates are asymptotically less biased but with the same order of variance as compared to the classical estimators with second-order kernels. A simple, data-dependent algorithm for selecting bandwidth is introduced and is shown to be consistent with estimating th...

متن کامل

Bayes Interval Estimation on the Parameters of the Weibull Distribution for Complete and Censored Tests

A method for constructing confidence intervals on parameters of a continuous probability distribution is developed in this paper. The objective is to present a model for an uncertainty represented by parameters of a probability density function.  As an application, confidence intervals for the two parameters of the Weibull distribution along with their joint confidence interval are derived. The...

متن کامل

Comparison of three Estimation Procedures for Weibull Distribution based on Progressive Type II Right Censored Data

In this paper, based on the progressive type II right censored data, we consider estimates of MLE and AMLE of scale and shape parameters of weibull distribution. Also a new type of parameter estimation, named inverse estimation, is introdued for both shape and scale parameters of weibull distribution which is used from order statistics properties in it. We use simulations and study the biases a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008